Semester	: I	Major Core I
Name of the Course	: Algebra I	

Course Code : PM2011

No. of hours per week	Credits	Total No. of hours	Marks	
6	5	90	100	

Objectives: 1.To study abstract Algebraic systems.

2. To know the richness of higher Mathematics in advanced application systems.

Course Outcome

CO No.	Course Outcomes	PSOs	CL
	Upon completion of this course, students will be able to	addressed	
CO -1	understand the fundamental concepts of abstract algebra and give illustrations.	PSO- 1	U
CO -2	analyze and demonstrate examples of various Sylow p- subgroups, automorphisms, conjugate classes, finite abelian groups, characteristic subgroups, rings, ideals, Euclidean domain, Factorization domain.	PSO- 2	An
CO -3	develop proofs for Sylow's theorems, finite abelian groups, direct products, Cauchy's theorem, Cayley's Theorem, automorphisms for groups.	PSO- 2	С
CO -4	develop the way of embedding of rings and design proofs for theorems related to rings, polynomial rings, Division Algorithm, Gauss' lemma and Eisenstein Criterion	PSO- 2	С
CO -5	apply the concepts of Cayley's theorem, Counting principles, Sylow's theorems, Rings and Ideals in the structure of certain groups of small order.	PSO-4	Ар

Unit	Section	Topics	Lecture hours	Learning Outcomes	Pedagogy	Assessment/ evaluation			
Ι	Automorphisms and conjugate elements								
	1.	1. Automorphism: Definition& Examples		To understand the concept of automorphism and find	Lecture	Test			

		Automorhism of a		automorphisms of finite		
		finite cyclic group.		and infinite cyclic		
		an infinite cyclic		groups		
		group		8.0 mps		
		Sroup				
	2.	Theorems based on	4	To understand the	Lecture	Test
		automorphism,		concept of inner		
		Inner		automorphism		
		automorphism				
		1				
	3.	Problems based on	3	To understand the	Group	Quiz
		automorphism,Cayl		Cayley's Theorem	Discussion	
		ey's Theorem				
	1	Conjuggar	2	To understand the	Sominor	Formativa
	4.	Coughy's theorem	5	10 understand dive	Seminar	Aggggment
		Cauchy's theorem,		illustrations		Assessment
		Conjugate Classes		mustrations		Test I
II	Sylow's	theorems and Direct	products			
		-	-		1	1
	1.	Sylow's first	3	To understand the	Lecture	Test
		theorem(Second		concept and give		
		Proof)		illustrations		
	2	<i>n</i> -Sylow subgroups	3	To understand	Lecture	Test
	2.		5	Sylow'ssubgroups	Leeture	1050
				Sylow ssubgroups		
	3.	Second Part of	3	To develop proofs for	Lecture	Formative
		Sylow's theorem,		theorems based on		Assessment
		Third Part of		Sylow P- subgroups		Test I, II
		Sylow's theorem				
	4.	Direct products:	4	To understand the	Seminar	Test
		Definition,		concept and give		
		Examples and		illustrations		
		Theorems				
	5	Theorems based on	4	To understand the	Lecture	Test
	0.	finite abelian	•	concept and give	Lootare	1050
		groups		illustrations		
		groups		mustrations		
III	Rings				·	
	1.	Rings: Definition,	3	To understand the	Lecture	Test
		Examples and		concept and practice	With PPT	
		Theorems, Some		theorems		
		,				

		special classes of Rings				
	2.	Characteristic of a Ring,Homomorphis ms: Definition, Examples, Theorems	3	To understand the concept and develop theorems	Group Discussion	Test
	3.	Ideals and Quotient Rings: Definition, Examples, Theorems	4	To understand the concept and analyze the theorems	Lecture	Test
	4.	More Ideals and Quotient Rings: Definition, Examples, Theorems	5	To understand the concept Quotient Rings and demonstrate examples.	Lecture	Formative Assessment Test II
IV	Embedd	ing of Rings				
	1.	The field of Quotients of an integral domain: Definition , Examples and Theorems	3	To understand the concept the field of Quotients of an integral domain and give illustrations	Lecture with illustration	Test
	2.	Embedding of rings: Ring into a Ring with unity, Ring into a Ring with endomorphisms, Integral domain embedded into a field and related theorems	4	To develop the way of embedding of rings and design proofs for theorems related to rings	Lecture	Test
	3.	Euclidean Rings, Unique Factorization theorem	4	To understand the concept and practice theorems related to the concepts.	Group Discussion	Test

V	4. Polynon	A particular Euclidean Ring, Fermat's Theorem iial Rings	4	To learn and interpret the concept and theorem	Seminar	Formative Assessment Test III
	1.	Polynomial Rings: Definition , Examples and Theorems The Division Algorithm	5	To understand the concept and practice theorems related to the concepts	Lecture	Test
	2.	Polynomials over the Rational Field: Definition , Examples and Theorems	4	To understand the concept and practice theorems related to the concepts	Lecture	Formative Assessment Test III
	3.	Gauss' lemma, The Eisenstein Criterion	3	To learn and understand the theorems	Seminar	Assignment
	4.	PolynomialRings over Commutative Rings, Unique Factorization Domains	3	To practice theorems based on this concept	Lecture	Assignment

Course Instructor(Aided): Dr.J. Befija Minnie

HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Mrs. J. Anne Mary Leema

Major Core II

Course Instructor(SF): Ms.G.Arockia Amala Sherly

Semester : I

Name of the Course : An

Course Code

: Analysis I

: PM2012

No. of hours per week	Credits	Total No. of hours	Marks	
6	4	90	100	

Objectives:

1. To understand the basic concepts of analysis.

2. To formulate a strong foundation for future studies.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO -1	explain the fundamental concepts of analysis and their role in modern mathematics.	PSO-3	U, Ap
CO -2	deal with various examples of metric space, compact sets and completeness in Euclidean space.	PSO- 2	An
CO -3	utilize the techniques for testing the convergence of sequence and series	PSO-1	Ap
CO -4	understand the important theorems such as Intermediate valued theorem, Mean value theorem, Roll's theorem, Taylor and L'Hospital theorem	PSO-3	U
CO -5	apply the concepts of differentiation in problems.	PSO- 4	Ар

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/
			hours	Outcomes		evaluation
I	Basic To	pology				
	1	Definitions and examples of metric spaces, Theorems based on metric spaces.	5	To explain the fundamental concepts of analysis and also todeal with various examples of metric space.	Lecture	Test
	2	Definitions of compact spaces and related theorems, Theorems based on compact sets	5	To understand the definition of compact spaceswith examples and theorems	Lecture	Test

	3	Weierstrass theorem, Perfect Sets, The Cantor set Connected Sets and related problems	3	To understand the concepts of Perfect Sets and The Cantor set To understand the definitionof Connected Setsandpractice various problems.	Lecture	Test Formative Assessment Test I
II	Converg	ent Sequences				
	1	Definitions andtheorems of convergent sequences, Theorems based on convergent sequences	5	To Learn some techniques for testing the convergence of sequence.	Lecture	Test
	2	Theorems based on Subsequence s	2	To understand the concept of Subsequences with theorems	Lecture	Formative Assessment Test I
	3	Definition and theorems based on Cauchy sequences, Upper and lower limits	5	To Understand the definition and theorems based on Cauchy sequences	Lecture	Test
	4	Some special sequences, Problems related to convergent sequences	3	To Understand the problems related to convergent sequences	Lecture	Test

III	Series					
	1	Series, Theorems based on series	3	To Learn some techniques for testing the convergence series and confidence in applying them	Lecture	Test
	2	Series of non-negative terms, The number e	4	To find the number e	Lecture	Assignment
	3	The ratio and root tests – example and theorems, Power series	3	To Understand the ratio and root tests	Lecture with PPT	Quiz
	4	Summation of parts, Absolute convergence	2	To apply the techniques for testing the absolute convergence of series	Lecture	Test
	5	Addition and multiplicatio n of series, Rearrangeme nts	3	To find theAddition and multiplication of series	Lecture with group disscussio n	Formative Assessment Test II
IV	Continui	ity				
	1	Definitions and Theorems based on Limits of functions, Continuous functions	4	To explain the fundamental concepts of analysis and their role in modern mathematics	Lecture with PPT	Test

	2	Theorem	3	To Understand	Lecture	Quiz
		related to		the theorem		
		Continuous		related to		
		functions,		Continuous		
		Continuity		functions		
		and				
		Compactness				
	3	Corollary	3	To Understand	Sominor	Formativa
	5	Theorems	5	the concents of	Seminar	Assessment II
		hand on		Continuity and		Assessment II
		Cantinuity		Commonte and		
		Continuity		Compactness		
		Compactness				
		, Examples				
		and Remarks				
		related to				
		compactness				
	4	Continuity	2	To Understand	Lecture	Assignment
		and		the definition of		
		connectednes		Continuity and		
		s,		connectedness		
		Discontinuiti				
		es				
	5	Monotonic	3	To Understand	Lecture	Test
	5	functions	5	the definition of	Lecture	1050
		Infinite		Monotonic		
		limits and		functions		
		limits and		Infinito limito		
		infinity		and limits at		
		mmity		and mints at		
				mmmty		
V	Differen	tiation				
	1	The	3	To Apply the	Lecture	Assignment
		derivative of		concepts of		
		a real		differentiation		
		functions -				
		Theorems,				
		Examples				
	2	Mean value	3	To Understand	Lecture	Test
		theorems		the important		
				L L		

			Mean value theorem		
3	The continuity of derivatives, L'Hospital rule, Derivatives of higher order, Taylor's Theorem	4	To Understand the important theorems such as Taylor and L'Hospital theorem	Lecture with group discussion	Quiz
4	Differentiati on of vector valued functions	3	To Understand the concepts of differentiation	Lecture	Formative Assessment
5	Problems related to differentiatio n	2	ToApplytheconceptsofdifferentiation inproblems.	Lecture	Assignment

Course Instructor(Aided): Dr. M.K. Angel Jebitha Course Instructor(SF): Ms. V.G. Michael Florance HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Ms. J. Anne Mary Leema

Semester: IMajor Core IIIName of the Course: Probability and StatisticsCourse Code: PM2013

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	recall the basic probability axioms, conditional probability, random variables and related concepts	PSO-2	R
CO- 2	compute marginal and conditional distributions and check the stochastic independence	PSO-2	U, Ap

CO- 3	recall Binomial, Poisson and normal distributions and learn	PSO-4	R,U
	new distributions such as multinomial, Chi square and		
	Bivariate normal distribution		
CO- 4	learn the transformation technique for finding the p.d.f of	PSO-1,3	U, Ap
	functions of random variables and use these techniques to		
	solve related problems		
CO -5	employ the relevant concepts of analysis to determine	PSO-5	Ap
	limiting distributions of random variables		

Un	Section	Topics	Lecture	e Learning outcomes	Pedagogy	Assessment/
lt			hours			evaluation
1	Conditio	nal probability and Stochast	ic indepe	endence		
	1	Definition of Conditional probability and multiplication theorem Problems on Conditional probability Bayre's theorem	4	Explain the primary concepts of Conditional probability	Lecture through Google meet.	Evaluation through appreciative inquiry
	2	Definition and calculation of marginal distributions Definition and calculation of conditional distributions Conditional expectations	4	To distinguish between marginal distributions and conditional distributions	Lecture through Google meet	Evaluation through online quiz and discussions.
	3	The correlation coefficient Derivation of linear conditional mean Moment Generating function of joint distribution Stochastic independence of randomVariables and related problems	4	To understandthe theorems based onStochastic independence of random variables	Lecture through Google meet	online Test and Assignment
	4	Necessary conditions for stochastic independence. Necessary and sufficient conditions for stochastic independence, Pairwise and mutual stochastic independence, Bernstein's example.	3	To understandthe necessary and sufficient conditions for stochastic independence	Discussion through Google meet	Online Quiz and Test
II	Some sp	ecial distributions	•			

	1	Derivation of Binomial distribution M.G.F and problems related to Binomial distribution Law of large numbers Negative binomial distribution	4	To understand Law of large numbers Negative binomial distribution	Lecture with Examples	Evaluation through online discussions.
	2	Trinomial and multinomial distributions Derivation of Poisson distribution using Poisson postulates M.G.F and problems related to Poisson distribution Derivation of Gamma distribution using Poisson postulates	4	To know aboutDerivation of Poisson distribution using Poisson postulates	Lecture through Google meet	Evaluation through appreciative inquiry thro google meet
	3	Chi-Square distribution and its M.G.F Problems on Gamma and Chi-Square distributions The Normal distribution	4	To identify Chi-Square distribution and its M.G.F Problems on Gamma and Chi-Square distributions The Normal distribution	Lecture through Google meet	Formative Assessment Online Test
	4	Derivation of standard Normal distribution M.G.F and problems on Normal distribution The Bivariate Normal distribution Necessary and sufficient condition for stochastic independence of variables having Bivariate Normal distribution	4	Relate the Normal distribution and stochastic independence of variables having Bivariate Normal distribution	Discussion Through Google meet	Slip Test through online
III	Distribu	tions of functions of random	variabl	es		
	1	Sampling theory Sample statistics and related problems Transformations of single variables of discrete typeand related problems	4	Explain the primary concepts of Sampling theory Sample statistics	Lecture through Google meet	Evaluation through discussions.
	2	Transformations of single variables of continuous typeand related problems	4	To understand Transformations of single variables and Transformations of two or more variables	Lecture through Google meet	Evaluation through appreciative inquiry

	3	Transformations of two or more variables of discrete typeand related problems Transformations of two or more variables of	3	Explain the derivation of Beta distribution	Lecture through	Formative Assessment
		continuous typeand related problems Derivation of Beta - distribution			Google meet	Test online
	4	Derivation of t- distribution Problems based on t - distribution Derivation of F- distribution Problems based on F - distribution	4	To identify the t - distribution and F - distribution	Discussion Through Google meet	Slip Test through online
IV	Limiting	distributions	Г <u>-</u>			
	1	Behavior of distributions for large values of n Limiting distribution of n th order statistic Limiting distribution of sample mean from a normal distribution	3	Explain the behavior of distributionsfor large values ofn	Lecture through Google meet	Evaluation through discussions.
	2	Stochastic convergence and convergence in probability Necessary and sufficient condition for Stochastic convergence Limiting moment generating function	4	To understand necessary and sufficient condition for Stochastic convergence Limiting moment generating function	Lecture through Google meet	Evaluation through Assignment online
	3	Computation of approximate probability The Central limit theorem	3	To understand The Central limit theorem	Lecture through Google meet	Formative Assessment Test online
	4	Problems based on theCentral limit theorem Theorems on limiting distributions Problems on limiting distributions	4	To calculate Problems based on theCentral limit theorem and Problems on limiting distributions	Lecture through Google meet	Slip Testonline
V	Estimati	on	1			
	1	Estimation, Point Estimation	3	Explain the primary concepts of Estimation, Point Estimation	Lecture through Google meet	Evaluation through discussions.

2	Measures of quality of	4	Finding the 95%	Lecture	Formative
	Estimators, Confidence		confidence interval for μ	through	Assessment
	Intervals for Means			Google	test
				meet	
3	Confidence intervals for	4	Explain about the	Lecture	Slip Test
	difference of Means		maximum likelihood	through	online
			estimators and functions	Google	
				meet	
4	Confidence intervals for	4	To understand the	Lecture	online
	Variances		variance of unbiased	through	Assignment
			estimators	Google	
				meet	

Course Instructor(Aided): Ms. J.C. Mahizha	HOD(Aided):: Dr. V. M. Arul Flower Mary
Course Instructor(SF): Dr. S.Kavitha	HOD(SF): Ms. J. Anne Mary Leema

Semester : I

Major Core IV

Name of the Course

: PM2014

No. of hours per week	Credits	Total no. of hours	Marks
6	4	90	100

: Ordinary differential equations

Objectives:

Course Code

1. To study mathematical methods for solving differential equations

2. Solve dynamical problems of practical interest.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions of degree and order of differential equations and determine whether a system of functions is linearly independent using the Wronskian definition.	PSO - 2	R,U
CO - 2	solve linear ordinary differential equations with constant coefficients by using power series expansion.	PSO - 3	Ap
CO - 3	determine the solutions for a linear system of first order equations.	PSO - 2	U
CO - 4	learnproperties of Legendre polynomials and Properties of Bessel Functions.	PSO - 4	U

CO - 5	analyze the concepts of existence and uniqueness of solutions of the ordinary differential equations.	PSO - 2	An
CO - 6	create differential equations for a large number of real world problems.	PSO - 1	С

Unit	Section	Topics	Lect	Learning outcomes	Pedagogy	Assessment/		
			ure			evaluation		
			hour					
			S					
Ι	Second Order linear Equations							
	1	Second order	4	Understand the concepts of	Lectures,	Test		
		Linear Equations -		existence and uniqueness	Assignmen			
		Introduction		behavior of solutions of the	ts			
				ordinary differential				
				equations				
	2	The general	4	To understand the theorems	Lectures,	Test		
		solution of a		and identify whether a	Assignmen			
		homogeneous		system of functions is	ts			
		equation		linearly independent using				
				the Wronskian				
	3	The use of a known	4	To determine the solutions	Lectures,	Test		
		solution to find		for the Second order Linear	Assignmen			
		another		Equations	ts			
	4	The method of	4	To determine the solutions	Lectures,	Test		
		variation of		using the method of	Seminars			
		parameters		variation of parameters				
II	Power se	eries solutions						
	1	Review of power	4	To learn about Power Series	Lectures,	Test		
		series, Series		method	Assignment			
		solutions of first			S			
		order equations						

	2	Power Series	3	To determine series	Lectures,	Test
		solutions for		solutionsforsecond order	Seminars	
		Second order linear		equations		
		equations –				
		Ordinary Points				
	3	Singular points	3	To understand the concepts	Lectures,	Quiz
				of regular singular points	Group	
				and irregular singular points	Discussion	
					Discussion	
	4	Power Series	5	To solve ordinary linear	Group	Test
		solutions for		differential equations with	Discussion	
		Second order linear		constant coefficients by		
		equations -Regular		using Frobenius method		
		singular points				
TTT	System	f Equations				
111	System	or Equations				
	1	Linear systems-	4	To understand the theorems	Lectures,	Test
		theorems		in Systems of Equations	Online	
					Assignmen	
					ts	
		T • .	2			T (
	2	Linear systems-	3	To determine the solutions	Online	lest
		problems		for a linear system of first	Assignmen	
				order equations	ts	
	3	Homogeneous	4	To understand the theorems	Seminars	Test
		linear systems with		Homogeneous linear		
		constant		systems with constant		
		coefficients		coefficients		
	4	Homogeneous	4	To determine the solutions	Group	Test
		linear systems with		for Homogeneous linear	Discussion	
		constant		systems with constant	s, Online	
		coefficients-		coefficients	Assignmen	
		problems			ts	
IV	Some Sp	ecial Functions of Ma	athema	tical Physics		
	1	Lagandra	2	To domino Do duiono ?	Lastres	Test
		Delymericle	5	formula	Lectures,	Test
		Polynomials		Iormula	Online	
					Assignmen	
					ts	

	2 3	Properties of Legendre Polynomials Bessel Functions. The Gamma Function	4	To understand Orthogonal property and other properties of Legendre Polynomials To derive Bessel function of the first kind J _P (x), To understand the gamma function and to determine the general solution of Bessel's equation	Online Assignmen ts Seminars Online Assignmen ts Seminars	Test
	4	Properties of Bessel Functions	4	To understand properties of Bessel functions and to derive orthogonal property of Bessel Functions	Online Assignmen ts Seminars	Test
V	Picard's	method of Successive	appro	ximations		
	1	The method of Successive approximations	4	To solve the problems using the method of Successive approximations	Lectures, Assignmen ts	Test
	2	Picard's theorem	3	To understand Picard's theorem	Lectures	Test
	3	Lipchitz condition	5	To solve problems using Lipchitz condition	Lectures, Group discussion	Quiz
	4	Systems-The second order linear equations	2	To solve the problems in Systems of second order linear equations	Assignmen ts	Assignment

Course InstructorAided): Dr.L.Jesmalar

HOD(Aided): Dr. V. M. Arul Flower Mary

HOD(SF): Ms. J. Anne Mary Leem

Course Instructor(SF): Ms. J. Anne Mary Leema

Semester : I

Name of the Course : Numerical Analysis

Course Code : PM2015

Elective I

No. of hours per week	Credits	Total No. of hours	Marks
6	4	90	100

Objectives:

1. To study the various behaviour pattern of numbers.

2. To study the various techniques of solving applied scientific problems.

Course Outcome

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the methods of finding the roots of the algebraic and transcendental equations.	PSO - 2	R
CO - 2	understand the significance of the finite, forward, backward and central differences and their properties.	PSO - 3	U
CO - 3	learn the procedures of fitting straight lines and curves.	PSO - 2	U
CO - 4	compute the solutions of a system of equations by using appropriate numerical methods.	PSO - 1	Ар
CO - 5	solve the problems in ODE by using Taylor's series method, Euler's method etc.	PSO - 4	Ар

Unit	Section	Topics	Lecture	Learning outcomes	Pedagogy	Assessment/	
			hours			evaluation	
Ι	Solution of Algebraic and Transcendental Equations						
	1	Bisection Method -	3	Recall about finding the	Lecture	Evaluation	
		Examples and		roots of the algebraic	with	through test	
		graphical		and transcendental	Illustration		
		representation,		equations using			
		Problems based on		algebraic methods.			
		Bisection Method					
	2	Method of False	3	Draw the graphical	Lecture	Evaluation	
		Position –		representation of each	with	through test	
		Examples and		numerical method.	Illustration		
		graphical					
		representation,					
		Problems based on					
		Method of False					
		Position.					
	3	Ramanujan's	3	To solve algebraic and	Discussion	Quiz and	
		Method &		transcendental equations	with	Test	
		Problems based		using	Illustration		
		onRamanujan's		Ramanujan'sMethod.			
		Method,					
	4	Secant Method -	3	To understand the	Lecture	Test	
		Problems based on		methods of Secant.	with		
		Secant Method and			Illustration		

		graphical				
	_	representation.	2			
	5	Muller's Method,	3	To understand the	Lecture	Test
		Problems based on		methods of Muller's.		
**	.	Muller's Method				
11	Interpola	ation	2	TT 1 . 1.1	.	
	1	Forward	3	Understand the	Lecture	Test
		Differences,		significance of the		
		Backward		finite, forward,		
		Differences and		backward and central		
		Central		differences and their		
		Differences,		properties.		
		Problems related to				
		Forward				
		Differences,				
		Differences and				
		Control				
		Differences				
		Differences, Detection of Errors				
		by use of difference				
		tables				
	2	Differences of a	3	To practice various	Lecture	Test
	-	polynomial.	5	problems	Lecture	1050
		Newton's formulae		F		
		for Interpolation.				
		Problems based on				
		Newton's formulae				
		for Interpolation				
	3	Central Difference	3	To solve problems using	Lecture	Formative
		Interpolation		Gauss's forward central		Assessment
		formulae - Gauss's		and Gauss's backward		Test
		forward central		formula		
		difference				
		formulae, Problems				
		related to Gauss's				
		forward central				
		difference				
		formulae, Problems				
		related to Gauss's				
		backward formula			~	
	4	Stirling's formulae,	4	To solve problems using	Group	Test
		Problems related to		Stirling's formulae	Discussion	
		Stirling's formulae,				
		Bessel's formulae				

	5	Problems related to	4	To solve problems using	Group	Test
		Bessel's formulae,		Bessel's formulae and	Discussion	
		Everett's formulae,		Everett's formulae		
		Problems related to				
		Everett's formulae				
III	Least sq	uares and Fourier Tr	ansforms			
	1	Least squares	2	To understand the Curve	Lecture	Quiz
		Curve Fitting		Fitting Procedure.		
		Procedure				
	2	Fitting a straight	3	To solve Problems	Lecture	Test
		line. Problems		related to fitting of		
		related to fitting of		straight line		
		straight line				
	3	Multiple Linear	2	To solve Problems	Lecture	Test
		Least squares		related to Multiple		
				Linear Least squares.		
	4	Linearization of	4	To solve Problems	Group	Formative
		Nonlinear		related to fitting of	Discussion	Assessment
		Laws. Problems		nonlinear equation.		Test
		related to fitting of				
		nonlinear equation.			T.	
	5	Curve fitting by	2	To solve Problems	Lecture	Test
		Polynomials.		related to fitting of		
		fitting of		Polynomials.		
		Dolymomials 01				
		rorynonnais				
IV	Numerio	al Linear Algebra				
	1	Triangular	2	To evaluate the matrix	Lecture	Test
		Matrices, LU		using LU		
		Decomposition		Decomposition method.		
		of a matrix		-		
	2	Solution of Linear	3	To understand the Gauss	Lecture	Quiz
		systems – Direct		elimination and practice	with	
		methods: Gauss		problems based on it	Illustration	
		elimination,				
		Necessity for				
		Pivoting, Problems				
		related to Gauss				
		elimination				
	3	Gauss-Jordan	3	To understand Gauss-	Lecture	Test
		method, Problems		Jordan method	and group	
		based on Gauss-			discussion	
		Jordan method,				
		Modification of the				
		Gauss method to				
	4	compute the inverse	2	T	T a star	Tract
	4	Examples to	3	10 compute the inverse	Lecture	Test
		compute the inverse		using unterent methods	witti	1

		using Modification			Illustration	
		of the Gauss				
		method, LU				
		Decomposition				
		method and related				
		problems, Solution				
		of Linear systems -				
		Iterative methods				
	5	Gauss-Seidal	3	To understand the	Lecture	Test
		method, Problems		Gauss-Seidal method	with	
		related to Gauss-		and Jacobi's method	Illustration	
		Seidal method.				
		Jacobi's method,				
		Problems related to				
		Jacobi's method				
V	Numerio	cal Solution of Ordina	ry Differe	ntial Equations	I	I
	1	Solution by	4	To solve Differential	Lecture	Test
		Taylor's series,		Equations using	with	
		Examples for		different methods	Illustration	
		solving Differential				
		Equations using				
		Tavlor's series.				
		Picard's method of				
		successive				
		approximations				
	2	Problems related to	4	To understand the	Lecture	Formative
		Picard's method.		methods Picard's and	with	Assessment
		Fuler's method		Fuler's and practice	Illustration	test
		Error Estimates for		problems related to it	mustration	test
		the Euler Method		problems related to it.		
		Problems related to				
		Fuler's method				
	3	Modified Euler's	4	To solve problems using	Lecture	Assignment
	C	method. Problems		Modified Euler's	with	1 100-18
		related toModified		method	Illustration	
		Fuler's method		method	mustration	
		Runge - Kutta				
		methods - II order				
		and III order				
	4	Broblems related to	1	To solve problems using	Locturo	Assignment
	4	Problems related to	4	Fourth order Pungo	Lecture	Assignment
		Nullge - Nulla II		Kutta mathada	Willi	
		Druch and III order,		Kutta methods	mustration	
		Problems related to				
		Fourth-order Runge				
		- Kutta methods				

Course Instructor(Aided): Dr. K. Jeya Daisy

HOD(Aided) :Dr. V. M. Arul Flower Mary

Course Instructor(S.F): Ms. V. Princy Kala

HOD(S.F) :Ms. J. Anne Mary Leema

Semester III :

Name of the course : Algebra III

Major Core IX

Course code : PM1731

Number of hours/ Week	Credits	Total number of hours	Marks
6	5	90	100

Objectives:

1. To learn in depth the concepts of Galois Theory, theory of modules and lattices.

2. To pursue research in pure Mathematics. Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO- 1	Recall the definitions and basic concepts of field theory and lattice theory	PSO-2, PSO-3	U
CO- 2	Express the fundamental concepts of field theory, Galois theory and theory of modules	PSO-2, PSO-3	U
CO- 3	Demonstrate the use of Galois theory to compute Galois over the rationals and modules	PSO-2, PSO-3	U
CO- 4	Distinguish between free module , quotient modules and simple modules	PSO-5	Ар
CO- 5	Interpret distributivity and modularity and apply these concepts in Boolean Algebra	PSO- 4	Е
CO- 6	Understand the theory of Frobenius Theorem ,four square theorem and Integral Quaternions	PSO-2, PSO-3	U
CO- 7	Develop the knowledge of lattices and establish new relationships in Boolean Algebra	PSO-3, PSO-4 PSO-5	С

Teaching Plan

Unit	Modul	e Topics	Lecture	Learning outcome	Pedagogy	Assessment/
T	Galois	Theory	nours			Evaluation
1	1	Fixed Field -	4	Recall the definitions and	Lecture	Evaluation
	1	Definition.		basic concepts of field	with	through:
		Theorems based on		theory and lattice theory.	illustration	
		Fixed Field, Group		Express the fundamental		Short Test
		of Automorphism		concepts of field theory,		
		1		Galois theory and theory		
				of modules		Formative
	2	Theorems based on	4	Express the fundamental	Lecture	assessment I
		group of		concepts of field theory,	with PPT	
		Automorphism,		Galois theory and theory	illustration	
		Finite Extension,		of modules		
		Normal Extension				
	3	Theorems based on	4	Recall the definitions and	Lecture	
		Normal Extension,		basic concepts of field	with	
		Galois Group,		theory and lattice theory,	illustration	
		Theorems based on		Express the fundamental		
		Galois Group		concepts of field theory,		
				Galois theory and theory		
	4	Calaia Casua aura	2	Of modules	Lasture	
	4	the retionals	5	Express the fundamental	Lecture	
		Theorems based on		Galois theory and theory	illustration	
		Galois Group over		of modules. Demonstrate	musuation	
		the rationals		the use of Galois theory		
		Problems based on		to compute Galois Group		
		Galois Group over		over the rationals and		
		the rationals		modules		
II	Finite F	Fields			1	
	1	Finite Fields –	3	Recall the definitions and	Lecture	Short Test
		Definition, Lemma-		basic concepts of field	with	
		Finite Fields,		theory and lattice theory,	illustration	
		Corollary-Finite		Express the fundamental		Formative
		Fields		concepts of field theory,		assessment
				Galois theory and theory		I, II
				ot modules		4
	2	Theorems based on	4	Recall the definitions and	Lecture	
		Finite Fields		basic concepts of field	with PPT	
				theory and lattice theory,	illustration	
				Express the fundamental		
				concepts of field theory,		
				Galois theory and theory		

				of modules		
	3	Theorems based on	4	Recall the definitions and	Lecture	
		Finite Fields,		basic concepts of field	with PPT	
		Wedderburn's		theory and lattice theory	illustration	
		Theorem on finite				
		division ring				
	4	Wedderburn's	3	Recall the definitions and	Lecture	
		Theorem,		basic concepts of field	with	
		Wedderburn's		theory and lattice theory,	illustration	
		Theorem-First Proof		Express the fundamental		
				concepts of field theory,		
				Galois theory and theory		
***				of modules		
111	A The	orem of Frobenius			T	a 1 b b
	1	A Theorem of	3	Understand the theory of	Lecture	Short Test
		Frobenius-efinitions,		Frobenius Theorem, four	With	Formation
		Algeraic over a		square theorem and	illustration	Formative
		on Algereia over a		Integral Quaternions		ussessment
		field				11
	2	Theorem of	5	Recall the definitions and	Lecture	Assignment
	2	Frobenius Integral	5	hasic concepts of field	with	on lemma
		Quaternions		theory and lattice theory	illustration	based on
		Lemma based on		Understand the theory of	mustrution	Algebraic
		Integral Quaternions		Frobenius Theorem, four		8
		8 (square theorem and		
				Integral Quaternions		
	3	Theorems based on	4	Understand the theory of	Lecture	
		Integral		Frobenius Theorem, four	with	
		Quaternions,		square theorem and	illustration	
		Lagrange Identity,		Integral Quaternions		
		Left division				
		Algorithm				
	4	Lemma based on	4	Recall the definitions and	Lecture	
		four square		basic concepts of field	with PPT	
		Theorem, Theorems		theory and lattice theory	illustration	
		based on four square				
IV	Modu					
1 V	1	Modules	1	Demonstrate the use of	Lecture	Short Test
	1	Definitions Direct	-	Galois theory to compute	with PPT	Short rest
		Sums Free		Galois over the rationals	illustration	
		Modules. Vector		and modules. Distinguish	mastration	Formative
		Spaces		between free module.		assessment
		~p~~~		quotient modules and		III
				simple modules		
	2	Theorems based on	4	Distinguish between free	Lecture	
		Vector Spaces,		module, quotient modules	with	
		Quotient Modules,		and simple modules	illustration	
		Theorems based on		•		

		Quotient Modules				
	3	Homomorphisms,	4	Demonstrate the use of	Lecture	
		Theorems based on		Galois theory to compute	with	
		Homomorphisms,		Galois over the rationals	illustration	
		Simple Modules		and modules		
	4	Theorems based on	3	Demonstrate the use of	Lecture	
		Simple Modules,		Galois theory to compute	with	
		Modules over PID's		Galois over the rationals	illustration	
				and modules		
V	Lattic	e Theory				
	1	Partially ordered set-	3	Recall the definitions	Lecture	Short Test
		Definitions,		and basic concepts of	with	
		Theorems based on		field theory and lattice	illustration	
		Partially ordered set		theory		Formative
	2	Totally ordered set,	4	Recall the definitions	Lecture	assessment
		Lattice, Complete		and basic concepts of	with	III
		Lattice		field theory and lattice	illustration	
				theory, Interpret		Seminar on
				distributivity and		Lattice
				modularity and apply		
				these concepts in		
				Boolean Algebra,		
				Develop the knowledge		
				of lattice and establish		
				new relationships in		
				Boolean Algebra		
	3	Theorems based on	3	Interpret distributivity	Lecture	
		Complete lattice,		and modularity and	with	
		Distributive Lattice		apply these concepts in	illustration	
				Boolean Algebra,		
				Develop the knowledge		
				of lattice and establish		
				new relationships in		
				Boolean Algebra		
	4	Modular Lattice,	4	Develop the knowledge	Lecture	
		Boolean Algebra,		of lattice and establish	with PPT	
		Boolean Ring		new relationships in	illustration	
				Boolean Algebra		

Course Instructor (Aided): Dr. L.Jesmalar Instructor(S.F): Dr. C. Jenila HOD(Aided) :Dr. V. M. Arul Flower Mary Course HOD(S.F) :Ms. J. Anne Mary Leema

Sem Nam Subj	ester ne of the Course ject code	: III :Topolo : PM17	gy 32	Major Core X	
	No. of Hours per	Week	Credits	Total No. of Hours	Marks
	6		5	90	100

Objectives:

1. To distinguish spaces by means of simple topological invariants.

2. To lay the foundation for higher studies in Geometry and Algebraic Topology.

Course Outcomes

CO	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1 U	Inderstand the definitions of topological space, closed sets, limit	PSO-2, PSO-	U
po ar	oints, continuity, connectedness, compactness, separation axioms nd countability axioms.	3	
CO-2 C	Construct a topology on a set so as to make it into a topological space	PSO-3, PSO-	С
		4,	
		PSO-5	
CO-3 D	Distinguish the various topologies such as product and box	PSO-2, PSO-	U, An
to	opologies and topological spaces such as normal and regular spaces.	3	
CO -4 C	Compare the concepts components and path components,	PSO-2,	E, An
C	onnectedness and local connectedness, countability axioms.	PSO-3, PSO-	
		4	
CO-5 P	Practice various Theorems related to regular space, normal space,	PSO-5	Ар
H	Hausdorff space, compact space.		
CO-6 C	Construct continuous functions, homeomorphism, projection	PSO-3, PSO-	С
m	napping.	4,	
		PSO-5	

Teaching Plan

Unit	Section	Topics	Lecture hours	Learning outcomes	Pedagogy	Assessment/e valuation
Ι	Topolog	gical space	1			
	1	Definition of topology, discrete and indiscrete topology, finite complement topology, Basis for a topology and examples	3	To understand the definitions of topological space and different types of topology	Lecture with PPT	Test
	2	Comparison of standard and lower limit topologies, Order topology: Definition & Examples, Product topology: Definition & Theorem	4	To compare different types of topology and Construct a topology on a set so as to make it into a topological space	Lecture	Test
	3	Subspace topology: Definition & Examples, Theorems	3	To understand the definition of subspace topology with examples and theorems	Lecture	Test
	4	Closed sets: Definition	4	To understand the definitions	Lecture	Test

		& Examples.		of closed sets and limit points		
		Theorems, Limit		with examples and theorems		
		points: Definition				
		Examples & Theorems				
	5	Hausdorff Spaces: Definition & Theorems	2	To identify Hausdorff spaces and practice various theorems	Lecture	Test
II		Continuous functions				
	1	Continuity of a	3	To understand the definition	Lecture	Test
	1	function: Definition	5	of continuous functions and	Lecture	1050
		Examples Theorems		construct continuous		
		and Rules for		functions		
		constructing continuous		Tunetions		
		function				
	2	Homeomorphism:	3	To understand the definition	Lecture	Formative
		Definition & Examples.	-	of homeomorphism and		Assessment
		Pasting lemma &		prove theorems		Test
		Examples		1		
	3	Maps into products,	3	To practice various	Lecture	Test
		Cartesian Product,		Theorems related to Maps		
		Projection mapping		into products, Cartesian		
				Product, Projection mapping		
	4	Comparison of box and	5	To distinguish the various	Lecture	Test
		product topologies,		topologies such as product		
		Theorems related to		and box topologies and		
		product topologies,		topological spaces		
		continuous functions				
		and examples				
III		Connectedness and Com	pactness			1
	1	Definitions: connected	4	To understand the concepts	Group	Quiz
		space open and closed		of connected space open and	discussion	
		sets, lemma, examples,		closed sets		
		Theorems.	2		.	m /
	2	Product of connected	3	To understand the concept	Lecture	Test
		spaces, examples,		product of connected spaces	with	
		Components and local		with examples	illustration	
	2	Deth components	2	To compare the concepts	Looturo	Test
	5	Locally connected:	5	components and path	Lecture	1051
		Definitions Theorems		components connectedness		
		Demittions, Theorems		and local connectedness		
	4	Compact space	3	To understand the concept	Lecture	Assignment
	•	Definition Examples	5	compact space with	and	Tibbigiliteitt
		Lemma Theorems and		examples and theorems	Seminar	
		Image of a compact		enumpies une théorems	Seminar	
		space				
	5	Product of finitely	3	To practice various theorems	Lecture	Formative
	-	many compact spaces.	-	related to product of finitely		Assessment
		Tube lemma, Finite		many compact spaces. Tube		Test
		intersection property:		lemma, Finite intersection		
		Definition & Theorem		property		

IV	(Compactness, Countabil	ity and sepa	ration axioms		
	1	Local compactness: Definition & Examples, Theorems	3	To understand the concept local compactness with examples and theorems	Lecture with illustration	Quiz
	2	One point compactification, First Countability axiom, Second Countability axiom: Definitions, Theorems,	3	To compare countability axioms	Lecture	Test
	3	Dense subset: Definitions & Theorem, Examples, Lindelof space : Definition , Examples	3	To understand the definition of dense subset and identify Lindelof space	Lecture and Seminar	Test
	4	Regular space & Normal space: Definitions, Lemma, Relation between the separation axioms,	3	To distinguish various topological spaces such as normal and regular spaces	Lecture	Test
	5	Examples based on separation axioms	2	To practice examples based on separation axioms	Group discussion	Test
V	(Countability and separat	tion axioms			
	1	Theorem based on separation axioms and Metrizable space	3	To practice various Theorems related to separation axioms and Metrizable space	Lecture with illustration	Quiz
	2	Compact Hausdorf space, Well ordered set	3	To understand the concept compact Hausdorf space, Well ordered set	Lecture	Test
	3	Urysohn lemma,	3	To constuct Urysohn lemma	Lecture	Formative Assessment Test
	4	Completely regular: Definition & Theorem	2	To understand the concept Completely regular space	Lecture	Assignment
	5	Tietze extension theorem	3	To constuct Tietze extension theorem	Lecture	Assignment

Course Instructor (Aided): Ms. T.Sheeba Helen Instructor(S.F): Ms. D. Berla Jeyanthy HOD(Aided) :Dr. V. M. Arul Flower Mary Course HOD(S.F) :Ms. J. Anne Mary Leema

Name of the Course : Measure Theory and Integration Majo

Subject Code : PM1733

Major Core X

Number of hours/ week	Credits	Total number of hours	Marks
6	4	90	100

Objectives:

1. To generalize the concept of integration using measures

2. To develop the concept of analysis in abstract situations.

Course Outcomes

СО	Upon completion of this course, the students will be able to	POs	CL
No.		addressed	
CO- 1	Define the concept of measures and some properties of measures	PSO 1	R
	and functions, Vitali covering		
CO- 2	Cite examples of measurable sets, functions, explain Riemann	PSO-2,	U
	integrals, Lebesgue integrals	PSO-3	
CO- 3	Apply measures and Lebesgue integrals in various measurable sets and measurable functions	PSO-5	Ар
CO- 4	Apply outer measure, differentiation and integration	PSO-5	Ар
CO- 5	Compare the different types of measures and Signed measures	PSO-2,PSO-3	An
CO- 6	Construct L ^p spaces and outer measurable sets	PSO-3,PSO-4, PSO-5	С

Teaching Plan

Total contact hours: 75 (Including lectures, assignments and tests)

Unit	Module	Topics	hours	Learning Outcome	Pedagogy	Assessment Evaluation
I	1.	Lebesgue Measure - Introduction, outer measure	4	To understand the measure and outer measure of any interval	Lecture, Illustration	Evaluation through : Class test on outer
	2.	Measurable sets and Lebesgue measure	5	To be able to prove Lebesgue measure using measurable sets	Lecture, Group discussion	measure and Lebesgue

П

	3.	Measurable	4	To understand the	Lecture,	measure
		functions		measurable functions	Discussion	
				and its uses to prove		
				various theorems		
	4.	Littlewood's	2	To differentiate	Lecture.	Quiz
		three principles	_	convergence and	Illustration	
		(no proof for first		pointwise convergence		
		two).				Formative
						assessment- I
II	1.	The Lebesgue	1	To recall Riemann	Lecture,	Formative
		integral - the		integral and its	Discussion	assessment- I
		Riemann Integral		importance		
	2		5	To an issue of the second	T a star a s	Multiple
	Ζ.	integral of a	5	integration in maggines	Lecture,	choice
		hounded function		integration in measures	Group	questions
		over a set of			discussion	Short test on
		finite measure				the integral
		minte measure				of a non-
	3.	The integral of a	5	To prove various	Lecture,	negative
		non-negative		theorems using non-	Illustration	function
		function		negative functions		
	4.	The general	4	To understand a few	Lecture	Formative
		Lebesgue integral		named theorems and		assessment-II
		8		proofs		
				* 		
III	1.	Differentiation	4	To recall monotone	Lecture,	Multiple
		and integration-		functions and use them	Group	choice
		differentiation of		with differentiation and	discussion	questions
		monotone		integration		TTu: dand an
		functions				Unit test on
	2.	Functions of	4	To evaluate the bounded	Lecture,	hounded
		bounded		variation of different	Illustration	variation
		variation		functions		variation
						Formative
	3	Differentiation of	4	To find differentiation of	Lecture	assessment-
	5.	an integral	г	integrals	Lociaro	II
	4.	Absolute	3	To differentiate	Lecture	
		continuity	5	continuity and absolute	Illustration	

				continuity		
IV	1.	Measure and integration- Measure spaces	3	To understand concepts of measure spaces	Lecture, Group discussion	Formative assessment- II
	2.	Measurable functions	3	To recall measurable functions and use them in measure spaces	Lecture, Discussion	Seminar on measure spaces, measurable
	3.	Integration	3	To integrate functions in measure spaces	Lecture, Illustration	functions and integration Assignment -
	4.	General convergence theorems	3	To learn various convergence theorems in measure spaces	Lecture, Discussion	general convergence theorems and signed
	5.	Signed measures	3	To understand signed measures in detail	Lecture	measures Formative assessment- III
V	1.	The L ^P spaces	5	To understand L ^P spaces	Lecture, Illustration	Seminar on outer measure, measurability
	2.	Measure and outer measure- Outer measure and measurability	3	To understand outer measure and easurability in L ^P spaces	Lecture, Discussion	and extension theorem Short test on outer
	3.	The extension theorem	7	To prove various theorems in L ^P spaces	Lecture, Group discussion	measure and measurability Formative assessment- III

Course Instructor (Aided): Dr. V. M. Arul Flower Mary Instructor(S.F): Ms. V. Mara Narghese HOI

IaryHOD(Aided) :Dr. V. M. Arul Flower Mary CourseHOD(S.F) :Ms. J. Anne Mary Leema

Semester

III

Name of the Course : Algebraic Number Theory

Elective III

Course Code : PM1734

No. of Hours per Week	Credits	Total No. of Hours	Marks		
6	4	90	100		

Teaching Plan

Unit	Module	Topics	Lecture	Learning Outcome	Pedagogy	Assessment/
			hours			Evaluation
Ι	Quadratic reciprocity and Quadratic forms					
	1	Quadratic Residues, definition, Legender symbol definition and Theorem based on Legender symbol	3	To understand quadratic and power series forms and Jacobi symbol	Lecture with Illustration	Test
	2	Lemma of Gauss, Definition, theorem based on Legender symbol	4	To understand quadratic and power series forms and Jacobi symbol and to detect units and primes in quadratic fields	Lecture with Illustration	Test
	3	Quadratic reciprocity, Theorem based on Quadratic reciprocity, The Jacobi symbol, definition	3	To understand quadratic and power series forms and Jacobi symbol	Lecture with PPT Illustration	Quiz and Test
	4	Theorems based on Jacobi symbol	2	To determine solutions of Diophantine equations	Lecture with Illustration	Formative Assessment Test
	5	Theorem based on Jacobi symbol and Legender symbol	2	To apply binary quadratic forms for the decomposition of a number into sum of sequences	Lecture with Illustration	Evaluation through test
II	Binary	Quadratic forms				
	1	Introductio, definition and Theorems based on Quadratic forms	2	To recall the basic results of field theory and to apply binary quadratic forms for the decomposition of a number into sum of sequences	Lecture with PPT Illustration	Test
	2	Definition, theorems based on binary Quadratic forms	4	To understand quadratic and power series forms and Jacobi symbol and to detect units and primes in quadratic fields	Lecture with Illustration	Quiz and Test
	3	Definition, Theorems based on modular group, Definition, theorem based on perfect square	3	To understand quadratic and power series forms and Jacobi symbol and to detect units and primes in quadratic fields	Lecture with Illustration	Test
	4	Theorems based on	2	I o calculate the possible	Lecture with	lest

		reduced Quadratic		partitions of a given number and	PPT	
		forms		draw Ferrer's graph	Illustration	
	5	Sum of two squares	2	To apply binary quadratic forms	Lecture with	Quiz and Test
		,Theorems based on		for the decomposition of a	Illustration	
		sum of two squares		number into sum of sequences		
III	Some	Diophantine equation		· · · · ·		•
	1	Introduction, The	4	To recall the basic results of field	Lecture with	Formative
		equation ax+by=c,		theory and to understand	Illustration	Assessment Test
		Theorems based on		quadratic and power series forms		
		ax+by=c		and Jacobi symbol		
	2	Examples based on	3	To calculate the possible	Lecture with	Test
		ax+by=c, Simultaneous		partitions of a given number and	PPT	
		linear		draw Ferrer's graph and to	Illustration	
		equation,Example-3		Identify formal power series and		
				compare Euler's identity and		
				Euler's formula		
	3	Examples based on	3	To calculate the possible	Group	Quiz and Test
		Simultaneous linear		partitions of a given number and	Discussion	
		equation, Example-5		draw Ferrer's graph		
	4	Theorem based on	3	To understand quadratic and	Lecture with	Test
		Simultaneous linear		power series forms and Jacobi	Illustration	
		equation,		symbol and to detect units and		
		Definition, Theorems		primes in quadratic fields		
		based on integral				
		solution				
	5	Lemma, Theorems	2	To detect units and primes in	Lecture with	Test
		based on primitive		quadratic fields	Illustration	
		solution				
IV	Algeb	raic Numbers	r		1	1
	1	Polynomials, Theorem	3	To understand quadratic and	Lecture with	Test
		based on Polynomials,		power series forms and Jacobi	Illustration	
		Theorem based on		symbol and to detect units and		
		irreducible		primes in quadratic fields		
		Polynomials, Theorem				
		based on primitive				
		Polynomials				
	2	Gauss lemma, Algebraic	4	To recall the basic results of field	Lecture with	Test
		numbers definition,		theory and to detect units and	PPT	
		Theorem based on		primes in quadratic fields	Illustration	
	2	Algebraic numbers	4		T (1	
	3	Theorem based on	4	To apply binary quadratic forms	Lecture with	lest
		Algebraic numbers,		for the decomposition of a	Illustration	
		Algebraic integers,		detect write and primes in		
		Algebraic number		detect units and primes in		
		neius, i neorem based		quadratic fields		
		fields. Theorem hass 1				
		neius, i neorem based				
	4	Algebraic integers	3	To understand quadratic and	L goturo with	Formativa
	4	Theorem based on	5	nower series forms and Jacobi	Illustration	Commanye Assessment Test
1	1	incorem based off		power series forms and Jacobi	musuation	1 socosment 1 col

		Algebraic integers,		symbol and to determine solutions		
		Quadratic fields ,		of Diophantine equations		
		Theorem based on				
		Quadratic fields ,				
		Definition, Theorem				
		based on norm of a				
		product				
	5	Units in Quadratic fields	3	To calculate the possible	Lecture with	Test
		Theorem based on		partitions of a given number and	PPT	
		Quadratic fields, Primes		draw Ferrer's graph and to	Illustration	
		in Quadratic fields		Identify formal power series and		
				compare Euler's identity and		
				Euler's formula		
V	The pa	artition Function				
	1	Partitions	2	To understand quadratic and	Lecture with	Test
		definitions, theorems		power series forms and Jacobi	Illustration	
		based on Partitions		symbol		
	2	Ferrers	3	To identify formal power series	Lecture with	
		Graphs, Theorems		and compare Euler's identity and	Illustration	Quiz and Test
		based on Ferrers		Euler's formula		
		Graphs				
	3	Formal power series	2	To apply binary quadratic forms	Lecture with	Formative
		and identity, Euler		for the decomposition of a	Illustration	Assessment Te
		formula		number into sum of sequences		
	4	Theorems based on		To detect units and primes in	Lecture with	Test
		Formal power series	3	quadratic fields	Illustration	
		and identity, Euler				
		formula				
	5	Theorems based on	3	To understand quadratic and	Lecture with	Test
		absolute convergent		power series forms and Jacobi	Illustration	
				symbol		

Course Instructor (Aided): Ms.Jancy Vini Mary Course Instructor(S.F): Ms. V. Princy Kala

HOD(Aided) :Dr. V. M. Arul Flower HOD(S.F) :Ms. J. Anne Mary Leema